If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2+350x+796=0
a = 25; b = 350; c = +796;
Δ = b2-4ac
Δ = 3502-4·25·796
Δ = 42900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{42900}=\sqrt{100*429}=\sqrt{100}*\sqrt{429}=10\sqrt{429}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(350)-10\sqrt{429}}{2*25}=\frac{-350-10\sqrt{429}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(350)+10\sqrt{429}}{2*25}=\frac{-350+10\sqrt{429}}{50} $
| k^2-(k+1)/2=1 | | 4(0.2x-6)=4/5x-2.4 | | -5x-3=-123+7x | | 3/y=16/35 | | .5(6x+8)=10x-16 | | 5=-9x-17x^2 | | 6/3=7/w | | 0.28x^2-0.08x-0.27=0 | | 30f2–11f+1=0 | | h2–7h+6=0 | | 12.86=2g+3.74 | | 11m-3=5 | | (x)=x^2-4x+10 | | 3x^2-31+56=0 | | 9m+112=265 | | 5.4=t-6.1 | | 12x+3000=4200+x | | X+8=6x-22 | | 12.23=2g+3.53 | | 5(2x)−3=20x+25 | | -5+3u=-20 | | 194n=3 | | -22=p=13.7 | | 5x-5=-2(4x+12)+13 | | 4v+-4=4 | | 2*k^2-k+1=2 | | 24x^2+34x-45=0 | | 13-7x=2x-50 | | 4n+4=14 | | 2-7c=1-8c | | -9-10s=-7s | | 14y-6=-10+2(8y+2) |